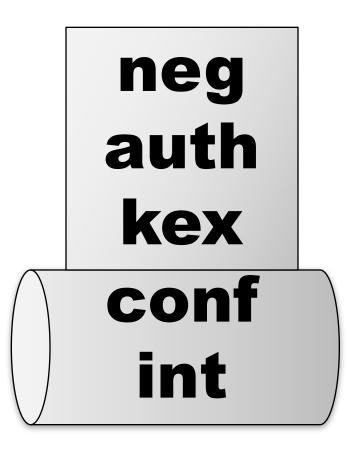
SAC Summer School 2016

Implementation and analysis of cryptographic protocols

Part 4: Provable security of TLS

Dr. Douglas Stebila MCMaster University


https://www.douglas.stebila.ca/teaching/sac-2016

Provable security

- Define a cryptographic scheme as a set of algorithms.
- Define security as an interactive game between a challenger and an adversary.
- Specify your scheme.
- Prove a theorem that any adve win the security game can be u some hard problem ("reduction").

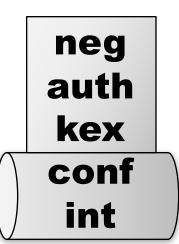
Same type of reduction as e.g. proving NPcompleteness of travelling salesman problem

Security goals of TLS

From an application perspective, TLS provides:

- (negotiation of parameters)
- entity authentication
- (key exchange)
- confidentiality and integrity of messages

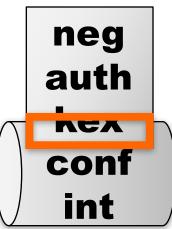
Is TLS secure?


Idea

Prove the TLS handshake is a secure authenticated key exchange protocol

 BR or CK or eCK model: adversary can't distinguish real session key from random session key

Prove the TLS

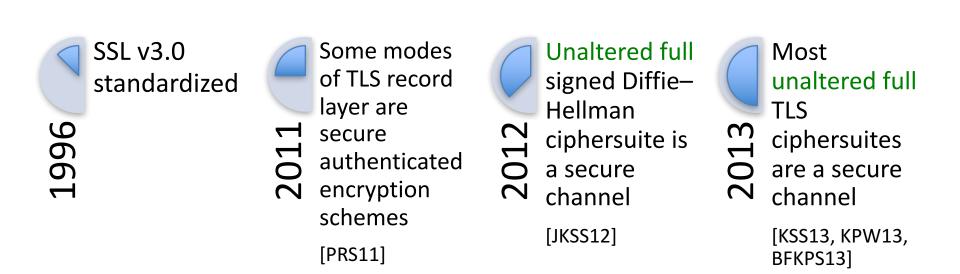

record layer is a secure authenticated encryption scheme

Problem

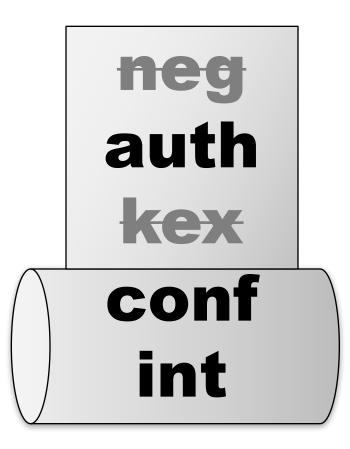
TLS handshake sends messages encrypted under the session key

- => overlap between
 handshake and record layer
- Adversary can
 distinguish real
 session key
 from random

Is TLS secure?


SSL v3.0 standardized Some variant of one ciphersuite of the TLS record layer is a secure encryption scheme [Kra01] COC Nandshake using RSA key transport is a secure authenticated key exchange protocol [JK02]

Truncated TLS handshake using RSA key transport or signed Diffie– Hellman is a secure AKE [MSW08]


"some variant"... "truncated TLS"... limited ciphersuites

Is TLS secure?

"unaltered" ... "full" ... "most ciphersuites"

Security goals of TLS

<u>Authenticated and</u> <u>Confidential Channel</u> <u>Establishment (ACCE)</u> security definition [JKSS12] captures:

- entity authentication
- confidentiality and integrity of messages

More results on TLS 1.2

ACCE family

- Renegotiation countermeasure
- Negotiation / downgrade resilience

Formal verification of implementation

• miTLS

Constructive cryptography

SAC Summer School 2016

Implementation and analysis of cryptographic protocols

Part 5: TLS 1.3

Dr. Douglas Stebila MCMaster University

https://www.douglas.stebila.ca/teaching/sac-2016

TLSv1.3: The Next Generation

• Currently under development at the IETF

- Primary goals:
 - remove ciphersuites without forward secrecy
 - remove obsolete / deprecated algorithms
 - provide low-latency mode with fewer round trips
 - encrypt more of the handshake to improve privacy

Zero round trip mode (0-RTT)

- Goal:
 - allow client to send application data on first C-S handshake flow
 - allow server to respond with application data on first S-C handshake flow
- Compared with 3 round trips for TLS 1.2 full handshake and 2 round trips for TLS 1.2 session resumption

Academic involvement in TLS 1.3

• TLS working group actively encouraged academic analyses of TLS 1.3

- TLS 1.3 Ready Or Not (TRON) Workshop
 - January 2016
 - May 2016

Academic results on TLS 1.3

- OPTLS protocol
 - Candidate design for 0-RTT mode
- Provable security of TLS 1.3 handshake candidates
 - draft-05 and draft-10, ECDHE and PSK
- Automated verification of TLS 1.3 modes using Tamarin prover
 - Identified some flaws that have been fixed
- Verified TLS 1.3 implementations
- TLS 1.3 and QUIC weaknesses against PKCS #1 v1.5 encryption
- Provable security analysis of post-handshake authentication

TLS 1.3 timeline

- Working group last call later in 2016?
- ~2? months for additional academic analysis
- Standardization in 2017?
- First implementations in 2017 or 2018
- First attacks...?
 - 0-RTT could be risky:
 - No forward secrecy
 - No solid replay protection
 - How do applications decide which requests are okay without replay protection?