
SAC	Summer	School	2016

Implementation	and	analysis	of	
cryptographic	protocols

Part	4:	Provable	security	of	TLS
Dr.	Douglas	Stebila

https://www.douglas.stebila.ca/teaching/sac-2016



• Define	a	cryptographic	scheme	as	a	set	of	
algorithms.

• Define	security	as	an	interactive	game	
between	a	challenger	and	an	adversary.

• Specify	your	scheme.
• Prove	a	theorem	that	any	adversary	that	can	
win	the	security	game	can	be	used	to	break	
some	hard	problem	(“reduction”).

Provable	security

Same	type	of	reduction	as	
e.g.	proving	NP-

completeness	of	travelling	
salesman	problem



From	an	application	
perspective,	TLS	provides:
– (negotiation	of	
parameters)

– entity	authentication
– (key	exchange)
– confidentiality	and	
integrity	of	messages

Security	goals	of	TLS

neg
auth
kex
conf
int



Idea
Prove	the	TLS	handshake	is	a	secure	
authenticated	key	exchange	protocol

– BR	or	CK	or	eCK model:	
adversary	can't	distinguish	real	
session	key	from	random	session	
key

Prove	the	TLS	
record	layer	is	a	
secure	
authenticated	
encryption	
scheme

Problem
TLS	handshake	sends	
messages	encrypted	under	the	
session	key

– =>	overlap	between	
handshake	and	record	layer

– Adversary	can	
distinguish	real	
session	key	
from	random

Is	TLS	secure?

neg
auth
kex
conf
int

neg
auth
kex
conf
int



19
96

SSL	v3.0	
standardized

20
01
Some	variant	
of	one	
ciphersuite of	
the	TLS	
record	layer	
is	a	secure	
encryption	
scheme
[Kra01]

20
02

Truncated TLS	
handshake	
using	RSA	key	
transport	is	a	
secure	
authenticated	
key	exchange	
protocol
[JK02]

20
08

Truncated TLS	
handshake	
using	RSA	key	
transport	or	
signed	Diffie–
Hellman	is	a	
secure	AKE
[MSW08]

Is	TLS	secure?

“some	variant”…	“truncated	TLS”…	
limited	ciphersuites



19
96

SSL	v3.0	
standardized

20
11
Some	modes	
of	TLS	record	
layer	are	
secure	
authenticated	
encryption	
schemes
[PRS11]

20
12

Unaltered	full	
signed	Diffie–
Hellman	
ciphersuite is	
a	secure	
channel
[JKSS12]

20
13

Most	
unaltered	full	
TLS	
ciphersuites
are	a	secure	
channel
[KSS13,	KPW13,	
BFKPS13]

Is	TLS	secure?

“unaltered”…	“full”…	“most	ciphersuites”



Authenticated	and	
Confidential	Channel	
Establishment	(ACCE)
security	definition	
[JKSS12]	captures:
– entity	authentication
– confidentiality	and	
integrity	of	messages

Security	goals	of	TLS

neg
auth
kex
conf
int



More	results	on	TLS	1.2

ACCE	family
• Renegotiation	
countermeasure

• Negotiation	/	
downgrade	resilience

Constructive	cryptography

Formal	verification	of	
implementation
• miTLS



SAC	Summer	School	2016

Implementation	and	analysis	of	
cryptographic	protocols

Part	5:	TLS	1.3
Dr.	Douglas	Stebila

https://www.douglas.stebila.ca/teaching/sac-2016



TLSv1.3:	The	Next	Generation

• Currently	under	development	at	the	IETF

• Primary	goals:
– remove	ciphersuites without	forward	secrecy
– remove	obsolete	/	deprecated	algorithms
– provide	low-latency	mode	with	fewer	round	trips
– encrypt	more	of	the	handshake	to	improve	privacy



Zero	round	trip	mode	(0-RTT)

• Goal:	
– allow	client	to	send	application	data	on	first	C-S	
handshake	flow

– allow	server	to	respond	with	application	data	on	
first	S-C	handshake	flow

• Compared	with	3	round	trips	for	TLS	1.2	full	
handshake	and	2	round	trips	for	TLS	1.2	
session	resumption



Academic	involvement	in	TLS	1.3

• TLS	working	group	actively	encouraged	
academic	analyses	of	TLS	1.3

• TLS	1.3	Ready	Or	Not	(TRON)	Workshop
– January	2016
–May	2016



Academic	results	on	TLS	1.3
• OPTLS	protocol
– Candidate	design	for	0-RTT	mode

• Provable	security	of	TLS	1.3	handshake	candidates
– draft-05	and	draft-10,	ECDHE	and	PSK

• Automated	verification	of	TLS	1.3	modes	using	Tamarin	
prover
– Identified	some	flaws	that	have	been	fixed

• Verified	TLS	1.3	implementations
• TLS	1.3	and	QUIC	weaknesses	against	PKCS	#1	v1.5	
encryption

• Provable	security	analysis	of	post-handshake	
authentication



TLS	1.3	timeline

• Working	group	last	call	later	in	2016?
• ~2?	months	for	additional	academic	analysis
• Standardization	in	2017?
• First	implementations	in	2017	or	2018
• First	attacks…?
– 0-RTT	could	be	risky:	
• No	forward	secrecy
• No	solid	replay	protection

– How	do	applications	decide	which	requests	are	okay	without	
replay	protection?


