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• Define	a	cryptographic	scheme	as	a	set	of	
algorithms.

• Define	security	as	an	interactive	game	
between	a	challenger	and	an	adversary.

• Specify	your	scheme.
• Prove	a	theorem	that	any	adversary	that	can	
win	the	security	game	can	be	used	to	break	
some	hard	problem	(“reduction”).

Provable	security

Same	type	of	reduction	as	
e.g.	proving	NP-

completeness	of	travelling	
salesman	problem



From	an	application	
perspective,	TLS	provides:
– (negotiation	of	
parameters)

– entity	authentication
– (key	exchange)
– confidentiality	and	
integrity	of	messages

Security	goals	of	TLS
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Idea
Prove	the	TLS	handshake	is	a	secure	
authenticated	key	exchange	protocol

– BR	or	CK	or	eCK model:	
adversary	can't	distinguish	real	
session	key	from	random	session	
key

Prove	the	TLS	
record	layer	is	a	
secure	
authenticated	
encryption	
scheme

Problem
TLS	handshake	sends	
messages	encrypted	under	the	
session	key

– =>	overlap	between	
handshake	and	record	layer

– Adversary	can	
distinguish	real	
session	key	
from	random

Is	TLS	secure?
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19
96

SSL	v3.0	
standardized

20
01
Some	variant	
of	one	
ciphersuite of	
the	TLS	
record	layer	
is	a	secure	
encryption	
scheme
[Kra01]

20
02

Truncated TLS	
handshake	
using	RSA	key	
transport	is	a	
secure	
authenticated	
key	exchange	
protocol
[JK02]

20
08

Truncated TLS	
handshake	
using	RSA	key	
transport	or	
signed	Diffie–
Hellman	is	a	
secure	AKE
[MSW08]

Is	TLS	secure?

“some	variant”…	“truncated	TLS”…	
limited	ciphersuites



19
96

SSL	v3.0	
standardized

20
11
Some	modes	
of	TLS	record	
layer	are	
secure	
authenticated	
encryption	
schemes
[PRS11]

20
12

Unaltered	full	
signed	Diffie–
Hellman	
ciphersuite is	
a	secure	
channel
[JKSS12]

20
13

Most	
unaltered	full	
TLS	
ciphersuites
are	a	secure	
channel
[KSS13,	KPW13,	
BFKPS13]

Is	TLS	secure?

“unaltered”…	“full”…	“most	ciphersuites”



Authenticated	and	
Confidential	Channel	
Establishment	(ACCE)
security	definition	
[JKSS12]	captures:
– entity	authentication
– confidentiality	and	
integrity	of	messages

Security	goals	of	TLS
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More	results	on	TLS	1.2

ACCE	family
• Renegotiation	
countermeasure

• Negotiation	/	
downgrade	resilience

Constructive	cryptography

Formal	verification	of	
implementation
• miTLS
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TLSv1.3:	The	Next	Generation

• Currently	under	development	at	the	IETF

• Primary	goals:
– remove	ciphersuites without	forward	secrecy
– remove	obsolete	/	deprecated	algorithms
– provide	low-latency	mode	with	fewer	round	trips
– encrypt	more	of	the	handshake	to	improve	privacy



Zero	round	trip	mode	(0-RTT)

• Goal:	
– allow	client	to	send	application	data	on	first	C-S	
handshake	flow

– allow	server	to	respond	with	application	data	on	
first	S-C	handshake	flow

• Compared	with	3	round	trips	for	TLS	1.2	full	
handshake	and	2	round	trips	for	TLS	1.2	
session	resumption



Academic	involvement	in	TLS	1.3

• TLS	working	group	actively	encouraged	
academic	analyses	of	TLS	1.3

• TLS	1.3	Ready	Or	Not	(TRON)	Workshop
– January	2016
–May	2016



Academic	results	on	TLS	1.3
• OPTLS	protocol
– Candidate	design	for	0-RTT	mode

• Provable	security	of	TLS	1.3	handshake	candidates
– draft-05	and	draft-10,	ECDHE	and	PSK

• Automated	verification	of	TLS	1.3	modes	using	Tamarin	
prover
– Identified	some	flaws	that	have	been	fixed

• Verified	TLS	1.3	implementations
• TLS	1.3	and	QUIC	weaknesses	against	PKCS	#1	v1.5	
encryption

• Provable	security	analysis	of	post-handshake	
authentication



TLS	1.3	timeline

• Working	group	last	call	later	in	2016?
• ~2?	months	for	additional	academic	analysis
• Standardization	in	2017?
• First	implementations	in	2017	or	2018
• First	attacks…?
– 0-RTT	could	be	risky:	
• No	forward	secrecy
• No	solid	replay	protection

– How	do	applications	decide	which	requests	are	okay	without	
replay	protection?


